Sunday 15 April 2012

TRAGEDY CHERNOBYL

Chernobyl_disaster

Kesan Letupan Loji Nuklear Chernobyl

International spread of radioactive substances

An exhibit at the Ukrainian National Chernobyl Museum. Mutations in both humans and other animals increased following the disaster. On farms in Narodychi Raion of Ukraine, for instance, in the first four years of the disaster nearly 350 animals were born with gross deformities such as missing or extra limbs, missing eyes, heads or ribs, or deformed skulls; in comparison, only three abnormal births had been registered in the five years prior.[67][68][69][70][71][72] Despite these claims, the World Health Organization states, "children conceived before or after their father's exposure showed no statistically significant differences in mutation frequencies."
Four hundred times more radioactive material was released than had been by the atomic bombing of Hiroshima. The disaster released 1/100 to 1/1000 of the total amount of radioactivity released by nuclear weapons testing during the 1950s and 1960s.[74] Approximately 100,000 km² of land was contaminated with fallout, the worst hit regions being in Belarus, Ukraine and Russia.[75] Slighter levels of contamination were detected over all of Europe except for the Iberian Peninsula.[13][76][77]
The initial evidence that a major release of radioactive material was affecting other countries came not from Soviet sources, but from Sweden, where on the morning of 28 April[78] workers at the Forsmark Nuclear Power Plant (approximately 1,100 km (680 mi) from the Chernobyl site) were found to have radioactive particles on their clothes.[79] It was Sweden's search for the source of radioactivity, after they had determined there was no leak at the Swedish plant, that at noon on 28 April led to the first hint of a serious nuclear problem in the western Soviet Union. Hence the evacuation of Pripyat on 27 April, 36 hours after the initial explosions, was silently completed before the disaster became known outside the Soviet Union. The rise in radiation levels had at that time already been measured in Finland, but a civil service strike delayed the response and publication.[80]
Contamination from the Chernobyl accident was scattered irregularly depending on weather conditions, but rain was purposely seeded over the Belorussian SSR by the Soviet air force to remove radioactive particles from clouds heading toward highly populated areas.[82] Reports from Soviet and Western scientists indicate that Belarus received about 60% of the contamination that fell on the former Soviet Union. However, the 2006 TORCH report stated that half of the volatile particles had landed outside Ukraine, Belarus, and Russia. A large area in Russia south of Bryansk was also contaminated, as were parts of northwestern Ukraine. Studies in surrounding countries indicate that over one million people could have been affected by radiation.[83]
Recently published data from a long-term monitoring program (The Korma Report)[84] shows a decrease in internal radiation exposure of the inhabitants of a region in Belarus close to Gomel. Resettlement may even be possible in prohibited areas provided that people comply with appropriate dietary rules.
In Western Europe, precautionary measures taken in response to the radiation included seemingly arbitrary regulations banning the importation of certain foods but not others. In France some officials stated that the Chernobyl accident had no adverse effects.[85] Official figures in southern Bavaria in Germany indicated that some wild plant species contained substantial levels of caesium, which were believed to have been passed onto them by wild boars, a significant number of which had already contained radioactive particles above the allowed level, consuming them.[clarification needed][86]

Radioactive release

Contributions of the various isotopes to the (atmospheric) dose in the contaminated area soon after the accident.
Like many other releases of radioactivity into the environment, the Chernobyl release was controlled by the physical and chemical properties of the radioactive elements in the core. While the general population often perceives plutonium as a particularly dangerous nuclear fuel, its effects are almost eclipsed by those of its fission products. Particularly dangerous are highly radioactive compounds that accumulate in the food chain, such as some isotopes of iodine and strontium.
Two reports on the release of radioisotopes from the site were made available, one by the OSTI and a more detailed report by the OECD, both in 1998.[87][88] At different times after the accident, different isotopes were responsible for the majority of the external dose. The dose that was calculated is that received from external gamma irradiation for a person standing in the open. The dose to a person in a shelter or the internal dose is harder to estimate.
The release of radioisotopes from the nuclear fuel was largely controlled by their boiling points, and the majority of the radioactivity present in the core was retained in the reactor.
·         All of the noble gases, including krypton and xenon, contained within the reactor were released immediately into the atmosphere by the first steam explosion.
·         55% of the radioactive iodine in the reactor, containing about 1760 PBq or 400 kg of I-131, was released, as a mixture of vapor, solid particles, and organic iodine compounds.
·         Caesium (85 PBq Cs-137[89]) and tellurium were released in aerosol form.
·         An early estimate for fuel material released to the environment was 3 ± 1.5%; this was later revised to 3.5 ± 0.5%. This corresponds to the atmospheric emission of 6 t of fragmented fuel.[88]
·         Total atmospheric release is estimated at 5200 PBq.[90]
Two sizes of particles were released: small particles of 0.3 to 1.5 micrometers (aerodynamic diameter) and large particles of 10 micrometers. The large particles contained about 80% to 90% of the released nonvolatile radioisotopes zirconium-95, niobium-95, lanthanum-140, cerium-144 and the transuranic elements, including neptunium, plutonium and the minor actinides, embedded in a uranium oxide matrix.

Health of plant workers and local people

In the aftermath of the accident, 237 people suffered from acute radiation sickness (ARS), of whom 31 died within the first three months.[10][91] Most of these were fire and rescue workers trying to bring the accident under control, who were not fully aware of how dangerous exposure to the radiation in the smoke was. Whereas, in the World Health Organization's 2006 report of the Chernobyl Forum expert group on the 237 emergency workers who were diagnosed with ARS, ARS was identified as the cause of death for 28 of these people within the first few months after the disaster. There were no further deaths identified, in the general population affected by the disaster, as being caused by ARS. Of the 72,000 Russian Emergency Workers being studied, 216 non-cancer deaths are attributed to the disaster, between 1991 and 1998. The latency period for solid cancers caused by excess radiation exposure is 10 or more years; thus at the time of the WHO report being undertaken, the rates of solid cancer deaths were no greater than the general population. Some 135,000 people were evacuated from the area, including 50,000 from Pripyat.[citation needed]

Residual radioactivity in the environment

Rivers, lakes and reservoirs

Earth Observing-1 image of the reactor and surrounding area in April 2009
The Chernobyl nuclear power plant is located next to the Pripyat River, which feeds into the Dnipro River reservoir system, one of the largest surface water systems in Europe. The radioactive contamination of aquatic systems therefore became a major problem in the immediate aftermath of the accident.[92] In the most affected areas of Ukraine, levels of radioactivity (particularly radioiodine: I-131, radiocaesium: Cs-137 and radiostrontium: Sr-90) in drinking water caused concern during the weeks and months after the accident. After this initial period, however, radioactivity in rivers and reservoirs was generally below guideline limits for safe drinking water.[92]
Bio-accumulation of radioactivity in fish[93] resulted in concentrations (both in western Europe and in the former Soviet Union) that in many cases were significantly above guideline maximum levels for consumption.[92] Guideline maximum levels for radiocaesium in fish vary from country to country but are approximately 1,000 Bq/kg in the European Union.[94] In the Kiev Reservoir in Ukraine, concentrations in fish were several thousand Bq/kg during the years after the accident.[93] In small "closed" lakes in Belarus and the Bryansk region of Russia, concentrations in a number of fish species varied from 100 to 60,000 Bq/kg during the period 1990–92.[95] The contamination of fish caused short-term concern in parts of the UK and Germany and in the long term (years rather than months) in the affected areas of Ukraine, Belarus, and Russia as well as in parts of Scandinavia.[92]

Groundwater

Groundwater was not badly affected by the Chernobyl accident since radionuclides with short half-lives decayed away long before they could affect groundwater supplies, and longer-lived radionuclides such as radiocaesium and radiostrontium were adsorbed to surface soils before they could transfer to groundwater.[96] However, significant transfers of radionuclides to groundwater have occurred from waste disposal sites in the 30 km (19 mi) exclusion zone around Chernobyl. Although there is a potential for transfer of radionuclides from these disposal sites off-site (i.e. out of the 30 km (19 mi) exclusion zone), the IAEA Chernobyl Report[96] argues that this is not significant in comparison to current levels of washout of surface-deposited radioactivity.
Flora and fauna
After the disaster, four square kilometers of pine forest directly downwind of the reactor turned reddish-brown and died, earning the name of the "Red Forest".[97] Some animals in the worst-hit areas also died or stopped reproducing. Most domestic animals were removed from the exclusion zone, but horses left on an island in the Pripyat River 6 km (4 mi) from the power plant died when their thyroid glands were destroyed by radiation doses of 150–200 Sv.[98] Some cattle on the same island died and those that survived were stunted because of thyroid damage. The next generation appeared to be normal.[98]A robot sent into the reactor itself has returned with samples of black, melanin-rich radiotrophic fungi that are growing on the reactor's walls.[99]Of the 440,350 wild boar killed in the 2010 hunting season in Germany, over 1,000 were found to be contaminated with levels of radiation above the permitted limit of 600 bequerels, due to residual radioactivity from Chernobyl.[100] Germany has "banned wild game meat because of contamination linked to radioactive mushrooms".[101]The Norwegian Agricultural Authority reported that in 2009 a total of 18,000 livestock in Norway needed to be given uncontaminated feed for a period of time before slaughter in order to ensure that their meat was safe for human consumption. This was due to residual radioactivity from Chernobyl in the plants they graze on in the wild during the summer. The after-effects of Chernobyl were expected to be seen for a further 100 years, although the severity of the effects would decline over that period.[102] In Britain and Norway, as of 2011, "slaughter restrictions remain for sheep raised on pasture contaminated by radiation fallout".[101]

Assessing the disaster's effects on human health

An international assessment of the health effects of the Chernobyl accident is contained in a series of reports by the United Nations Scientific Committee of the Effects of Atomic Radiation (UNSCEAR).[103] UNSCEAR was set up as a collaboration between various UN bodies, including the World Health Organisation, after the atomic bomb attacks on Hiroshima and Nagasaki, to assess the long-term effects of radiation on human health.
UNSCEAR has conducted 20 years of detailed scientific and epidemiological research on the effects of the Chernobyl accident. Apart from the 57 direct deaths in the accident itself, UNSCEAR predicted in 2005 based on Linear no-threshold model (LNT) that up to 4,000 additional cancer deaths related to the accident would appear "among the 600 000 persons receiving more significant exposures (liquidators working in 1986–87, evacuees, and residents of the most contaminated areas)".[104] Later this number was revised slightly up to 5,000. The number of excess deaths among 5 million people living in the less contaminated areas is estimated at 3,000–5,000. The number of excess cancer deaths worldwide (including all contaminated areas) is approximately 27,000 based on the same LNT.[105]
UNSCEAR now states:
Among the residents of Belarus, the Russian Federation and Ukraine, there had been up to the year 2005 more than 6,000 cases of thyroid cancer reported in children and adolescents who were exposed at the time of the accident, and more cases can be expected during the next decades. Notwithstanding the influence of enhanced screening regimes, many of those cancers were most likely caused by radiation exposures shortly after the accident. Apart from this increase, there is no evidence of a major public health impact attributable to radiation exposure two decades after the accident. There is no scientific evidence of increases in overall cancer incidence or mortality rates or in rates of non-malignant disorders that could be related to radiation exposure. The incidence of leukaemia in the general population, one of the main concerns owing to the shorter time expected between exposure and its occurrence compared with solid cancers, does not appear to be elevated. Although those most highly exposed individuals are at an increased risk of radiation-associated effects, the great majority of the population is not likely to experience serious health consequences as a result of radiation from the Chernobyl accident. Many other health problems have been noted in the populations that are not related to radiation exposure.[106]
However, thyroid cancer is generally treatable.[107] With proper treatment, the five-year survival rate of thyroid cancer is 96%, and 92% after 30 years,.[108] UNSCEAR counted 15 deaths from Thyroid cancer in the affected population. In addition, the IAEA states that there has been no increase in the rate of birth defects or abnormalities, or solid cancers (such as lung cancer) corroborating UNSCEAR's assessments.[109] UNSCEAR does also raise the possibility of long term genetic defects, pointing to a doubling of radiation-induced minisatellite mutations among children born in 1994.[110] There is some dispute over the control groups in this study and the long term effects are not clear.
The Chernobyl Forum is a regular meeting of IAEA, other United Nations organizations (FAO, UN-OCHA, UNDP, UNEP, UNSCEAR, WHO, and the World Bank), and the governments of Belarus, Russia, and Ukraine that issues regular scientific assessments of the evidence for health effects of the Chernobyl accident.[111] The Chernobyl Forum concluded that twenty-eight emergency workers ("liquidators") died from acute radiation syndrome including beta burns and 15 patients died from thyroid cancer in the following years, and it roughly estimated that cancer deaths caused by Chernobyl may reach a total of about 4,000 among the 5 million persons residing in the contaminated areas, the report projected cancer mortality "increases of less than one per cent" (~0.3%) on a time span of 80 years, cautioning that this estimate was "speculative" since at this time only a few tens cancer deaths are linked to the Chernobyl disaster.[citation needed] Fred Mettler, a radiation expert at the University of New Mexico, puts this last number at "perhaps" 5000, for a total of 9000 Chernobyl associated fatal cancers, saying "the number is small (representing a few percent) relative to the normal spontaneous risk of cancer, but the numbers are large in absolute terms".[112] The same report outlined studies based in data found in the Russian Registry from 1991 to 1998 that suggested that "of 61,000 Russian workers exposed to an average dose of 107 mSv about 5% of all fatalities that occurred may have been due to radiation exposure."[citation needed]
The same report went into depth about the risks to mental health of exaggerated fears about the effects of radiation:[109]
The designation of the affected population as “victims” rather than “survivors” has led them to perceive themselves as helpless, weak and lacking control over their future. This, in turn, has led either to over cautious behavior and exaggerated health concerns, or to reckless conduct, such as consumption of mushrooms, berries and game from areas still designated as highly contaminated, overuse of alcohol and tobacco, and unprotected promiscuous sexual activity.[113]
Fred Mettler commented that 20 years later:[114]
The population remains largely unsure of what the effects of radiation actually are and retain a sense of foreboding. A number of adolescents and young adults who have been exposed to modest or small amounts of radiation feel that they are somehow fatally flawed and there is no downside to using illicit drugs or having unprotected sex. To reverse such attitudes and behaviors will likely take years although some youth groups have begun programs that have promise.
In addition, disadvantaged children around Chernobyl suffer from health problems that are attributable not only to the Chernobyl accident, but also to the poor state of post-Soviet health systems.[109]
A significant issue relating to problems establishing consistent data to base the analysis of the impact of the Chernobyl accident on the population at large is the social and political changes in the region since 1990. These have had numerous impacts in the administration of health care, on socio-economic stability, and even on the manner in which statistical data is collected. Some of these difficulties are outlined in the report "Cancer Mortality in Russia and Ukraine: Validity, Competing Risks and Cohort Effects",[115] which points out among other things that:
"...there is clear evidence of weaknesses in cause-of-death registration, especially among those >70 which has, historically, led to underestimation of cancer mortality especially in rural populations. Against this background, the rapid increase in cancer mortality among the elderly in Russia and Ukraine in the late 1980s and its striking further rise in Ukraine in 1989-1990 seems to be due, in large part, to an increase in completeness of registration of cancer as an underlying (or primary) cause of death. The decline in cancer mortality at older ages in the 1990s, which is particularly striking in Ukraine, seems likely to represent a return to previous approaches to registration."
Another study critical of the Chernobyl Forum report was commissioned by Greenpeace, which asserts that "the most recently published figures indicate that in Belarus, Russia and Ukraine alone the accident could have resulted in an estimated 200,000 additional deaths in the period between 1990 and 2004."[14] The Scientific Secretary of the Chernobyl Forum criticized the report's exclusive reliance on non-peer reviewed locally produced studies (in fact, most of the study's sources are from peer-reviewed journals, including many Western medical journals, or from proceedings of scientific conferences[14]), while Gregory Härtl (spokesman for the WHO) suggested that the conclusions were motivated by ideology.[116]
The German affiliate of the International Physicians for the Prevention of Nuclear War (IPPNW) argued that more than 10,000 people are today affected by thyroid cancer and 50,000 cases are expected in the future.[117]
Chernobyl: Consequences of the Catastrophe for People and the Environment is an English translation of the 2007 Russian publication Chernobyl. It was published in 2009 by the New York Academy of Sciences in their Annals of the New York Academy of Sciences. It presents an analysis of scientific literature and concludes that medical records between 1986, the year of the accident, and 2004 reflect 985,000 premature deaths as a result of the radioactivity released. The authors suggest that most of the deaths were in Russia, Belarus and Ukraine, though others occurred worldwide throughout the many countries that were struck by radioactive fallout from Chernobyl. The literature analysis draws on over 1,000 published titles and over 5,000 internet and printed publications discussing the consequences of the Chernobyl disaster. The authors contend that those publications and papers were written by leading Eastern European authorities and have largely been downplayed or ignored by the IAEA and UNSCEAR.[118] This estimate has however been criticized as exaggerated, lacking a proper scientific base.[119]
Other health problems linked with the Chernobyl disaster include
·         Down syndrome (trisomy 21). In West Berlin, Germany, prevalence of Down syndrome (trisomy 21) peaked 9 months following the main fallout.[11, 12][citation needed] Between 1980 and 1986, the birth prevalence of Down syndrome was quite stable (i.e., 1.35–1.59 per 1,000 live births [27–31 cases]).[citation needed] In 1987, 46 cases were diagnosed (prevalence = 2.11 per 1,000 live births). Most of the excess resulted from a cluster of 12 cases among children born in January 1987.[citation needed] The prevalence of Down syndrome in 1988 was 1.77, and in 1989, it reached pre-Chernobyl values. The authors[citation needed] noted that the isolated geographical position of West Berlin before reunification, the free genetic counseling, and complete coverage of the population through one central cytogenetic laboratory support completeness of case ascertainment; in addition, constant culture preparation and analysis protocols ensure a high quality of data.[citation needed]
·         Chromosomal aberrations. Reports of structural chromosome aberrations in people exposed to fallout in Belarus and other parts of the former Soviet Union, Austria, and Germany argue against a simple dose-response relationship between degree of exposure and incidence of aberrations.[citation needed] These findings are relevant because a close relationship exists between chromosome changes and congenital malformations. Inasmuch as some types of aberration are almost specific for ionizing radiation, researchers use aberrations to assess exposure dose. On the basis of current coefficients, however, it is not certain that the calculated individual exposure doses resulting from fallout would not induce measurable rates of chromosome aberrations.[citation needed]
·         Neural tube defects (NTDs) in Turkey. During the embryonic phase of fetal development, the neural tube differentiates into the brain and spinal cord (i.e., collectively forming the central nervous system). Chemical or physical interactions with this process can cause NTDs. Common features of this class of malformations are more or less extended fissures, often accompanied by consecutive dislocation of central nervous system (CNS) tissue. NTDs include spina bifida occulta and aperta, encephalocele, and—in the extreme case—anencephaly. The first evidence in support of a possible association between CNS malformations and fallout from Chernobyl was published by Akar et al.. in 1988.[citation needed] The Mustafakemalpasa State Hospital, Bursa region, covers a population of approximately 90,000. Investigators have documented the prevalence of malformations since 1983.[citation needed] The prevalence of NTDs was 1.7 to 9.2 per 1,000 births, but during the first 6 months of 1987 increased to 20 per 1,000 (12 cases). The excess was most pronounced for the subgroup of anencephalics, in which prevalence increased 5-fold (i.e., 10 per 1,000 [6 cases]). In the consecutive months that followed (i.e., July–December 1987), the prevalence decreased again (1.3 per 1,000 for all NTDs, 0.6 per 1,000 for anencephaly), and it reached pre-Chernobyl levels during the first half of 1988 (all NTDs: 0.6 per 1,000; anencephaly: 0.2 per 1,000). This initial report was supported by several similar findings in observational studies from different regions of Turkey.[citation

No comments:

Post a Comment